
	
1

Visualizing Poetry: Creating Tools for Critical Analysis
Luis Meneses and Richard Furuta

Introduction	
 Current debates over “distant reading” (Moretti) seem to imply that digital tools

are suited to nothing else. However, we can and should develop more digital tools and

methods to read closely and carefully analyze literary documents. Moreover, these

analyses can be visualized. In distant reading as well as close, visualization tools can be

used to “amplify cognition” (Ware). Although too little work has been done in poetry

visualization, it can be used to emphasize the structure of the narrative, the organization

of the poem, the language elements, and the metaphors employed (Chaturvedi). We have

developed a set of visualization tools that aim to help scholars carry out the critical

analysis of poetry. More specifically, the purpose of the visualization tools is to help

synthesize and bring forward specific key elements found in poems. Our visualization

tools were developed using open–source programming languages; we used poems

encoded in TEI from The Poetess Archive to create the visualizations.

 The tools we developed purposely bring forward specific elements of poetry

through graphical representations by carefully layering annotations (Tufte) based on

literary criticism, thus creating new methods to analyze and create poetry. Additionally,

our tools place special emphasis in viewing the poems from different perspectives

(Meneses, Monroy, Furuta, et al.) and visualizing the textual representation of the poetic

texts in their formal structure (Audenaert et al.). These visualizations will be made

available to scholars of all sorts, whether they are theoretically or historically engaged in

the poetic texts that we use. In the following sections we will review the previous

	
2

research related to poetry visualization, describe the rationale behind the tools we have

developed and discuss their characteristics. Finally we will provide conclusions and

recommendations for future work.	 	

Previous Work
	
	 Little work has been done in creating tools to visualize and analyze poetry. Most

of the work that has been has focused on creating new forms of expression using

deformation and transformation techniques. These techniques are focused on creating

new art forms using poems as an input source. Examples of these transformations include

Visualizing Text by Diana Lange (Lange), Poetry on the Road (Schaffors, Müller and

Pfeffer), Text Universe (Rapati) and Ira Greenberg’s Syntactic Arthropod (Greenberg).

However, we have found that in many cases the transformations that are applied to a

poem do not provide a rendering of the original text. In these cases, the visualizations are

successful in transforming the text but ultimately hinder access to the original material.

To avoid this problem, we have developed,visualizations that transform the original poem

to create a new representation, but keep the poem visible and available for study and

analysis.

 The visualizations in Understanding Shakespeare (Thiel) provide an overview of

different plays by displaying the most commonly used words grouped for each character.

In this visualization, blocks of text represent scenes that are scaled depending on their

number of terms. Additionally, the speeches of major characters are highlighted and

characters are ordered by their order of appearance in the plays. Although the results of

Understanding Shakespeare are displayed on the web, a final iteration of the project was

a printed book version that provides a different way of reading the plays.

	
3

 Frameworks have been built with the specific purpose of analyzing poetry.

Myopia is a framework that enables its users to analyze poetry by visually emphasizing

the structure of the narrative, the organization of the poems, the language elements, and

the metaphors employed (Chaturvedi). Myopia was built in Python and used open source

libraries for displaying multidimensional graphics, which could be manipulated using an

intuitive user interface. Additionally, The Mandala Browser is a rich prospect interface

that can be used to analyze the different relationships occurring within a document

corpus. Because of its flexibility, the Mandala Browser is widely used within the

humanities (Gainor et al.; Ruecker, Radzikowska and Sinclair).

Visualizing Poetry

 Our visualization tools were developed using Processing ("Processing.org"), an

open-source programming language designed specifically for visual artists and designers

with the purpose of teaching the fundamentals of programming. Casey Reas and Ben Fry

started Processing as a project in 2001. However, Processing has evolved through the

years and it is used beyond its original pedagogical scope. Nowadays, Processing is also

widely used by visual artists and designers to create new ways of displaying of data,

animations and digital artworks.

 Using Processing has some obvious advantages related to the execution of the

source code and its portability. Processing is an extension of the Java Imaging Library, so

Processing files can be executed as Java programs. Additionally, the Processing language

is also available as a JavaScript port ("Processing.js"), making it possible to run our

visualizations in a modern web browser. We believe that the main advantage derived

	
4

from using Processing is the simplification of the development process by encapsulating

the complex data structures into simpler objects and methods. However, Processing is not

a perfect programming solution. For example, parsing complex XML documents and

creating complex user–interactions can be difficult. Because of this, we also relied on

external libraries and other programming languages to achieve our end results.

 In this paper we will describe the 4 different tools we have developed to visualize

and create poetry: Graphwave, SentimentGraph, SentimentWheel and Ambiances. These

visualization tools were created independently, but they all share similar characteristics.

In this section we will elaborate on their characteristics, advantages, and specific uses.

Graphwave

 Our initial idea for this visualization was to create a wave-like pattern using

geometrical shapes that would allow us to highlight certain terms within a given poem. In

this specific case, we chose to highlight the unique terms that could be found within a

poem. To create this visualization, we used a process that borrows concepts from the term

“concordance” in Picasso’s poetry (Meneses, Monroy, Mallen, et al.). This process can

be described in four steps. First, we identified the unique terms in a selected poem.

Second, each unique term was placed in a node in a Red Black Tree. A Red Black Tree is

a binary data structure where operations can be performed O(lg n) time, where n is the

number of nodes or terms. Third, each term occurrence along with its metadata was

placed in a linked list attached to each unique node in the tree. Finally, the poem

transcription and its binary tree are traversed simultaneously, drawing a square in the

canvas for the terms in the poem. The vertical position of each square is calculated based

	
5

on the frequency of the term it represents, and its color is more saturated if the term is

used less frequently. Thus, unique terms exhibit a more saturated color and are placed

higher along the canvas while common terms have a more transparent surrogate and have

a relative lower position.

 The resulting visualization creates a colorful wave-resembling pattern, where

terms are easily identifiable and can be referenced to the different parts of the poem.

Additionally, the visualization keeps the poem readable by following the pattern from left

to right. Longer poems are split into separate vertical waves. Figure 1 shows a

visualization of “When I Have Fears” by John Keats. More importantly, GraphWave

allows scholars to create new readings by focusing on a specific aspect from a poem. For

example, the visualization can be modified to highlight terms belonging to places, time

periods, figures of speech, etc. Certain words are used in poems because of their aesthetic

qualities and their semantic content. Therefore, unusual words with less frequency can be

used to the poet’s advantage when trying to convey a message. In “When I Have Fears”,

John Keats expresses fear of dying before finishing his life’s work and fear that he might

never experience love again. In the specific case of this poem, giving more importance to

terms by placing them higher on the vertical axis highlights these details.

	
6

Figure 1: Viewing “When I Have Fears” through GraphWave.	

SentimentGraph and SentimentWheel	

 For our next visualizations, we analyzed how specific elements of the language

and their inherent connotations are used in a poem. In the specific case of

SentimentGraph, we analyzed the sentiments behind each term in a poem. We created

this visualization using a two-step process. First, we used a Python script to query the

Sentiment Analysis API ("Sentiment Analysis - text-processing.com API v1.0

documentation"), which labeled each term as positive, neutral or negative. Second, we

used the sentiments for each term and we correlated them against the poem transcription.

Terms with a negative connotation are represented as red squares, whereas neutral terms

are gray and positive are blue. Additionally, we included information regarding line

numbers and a transcription of the poem. However, we found some disadvantages that

are derived from the procedure used for this visualization. First, the visualization

algorithm ignores the surrounding context of each term; and second, the sentiments

	
7

extracted from the web API reflect only the most common use of each word, which might

not reflect the emotion that the author wanted to express. Figure 3 shows the visual result

after feeding “Romance” by Edgar Allan Poe to the visualizing algorithm. We addressed

some of the shortcoming of this visualization in SentimentWheel.

Figure 2: Viewing “Romance” through SentimentGraph.

	
 The visualization behind SentimentWheel borrows some concepts from

SentimentGraph. Creating this visualization also involves a similar process. First, we

used a Python script to analyze the sentiments expressed. This time, we analyzed the

sentiments expressed by each line of the poem. As before, the sentiments for each line

were extracted using the Sentiment Analisis API. Second, we ran the sentiments we

obtained with the API along the lines and individual terms form each poem. For this

visualization, we decided to arrange the lines of a poem as a wheel. The line sentiments

are expressed as consecutive circles: red for negative, gray for neutral and blue for

	
8

positive feelings. The main advantage of this visualization is that the representation of the

sentiments in each line correspond more accurately to the emotion that the author wanted

to express. Another advantage is that the poem is readable by following the terms

clockwise. Figure 3 shows the resulting visualization of “When I Have Fears” by John

Keats. The contribution of SentimentGraph and SentimentWheel is producing new

readings of poems by embedding a visual representation of the author’s perceived

emotion during certain parts or passages of a poem. However, these visualizations can

also be extended to accommodate the different representations of certain semantic

passages. For example, the visualizations can be modified to represent important places,

time periods or characters.

Figure 3: Viewing “When I Have Fears” through SentimentWheel.

	
9

Ambiances

 For Ambiances we took a different approach. Our approach was based on the

premise that the current tools used to visualize poetry have three important

characteristics. First, the visualizations are created after the poem has been published.

Second, the scholars who create and use the visualization usually do not have any

relationship to the author who created the original literary work. And third, the

visualizations are a direct consequence of the transformations applied to the original text.

Taken together, the three characteristics mean that visualization tools serve their purpose

when highlighting certain passages in a poem, but do not have any effect or significant

influence on the author as the poem was written beforehand.

 Ambiances, our interactive framework to write and visualize poetry, challenges

these three characteristics and changes how poetry is visualized (Meneses, Furuta and

Mandell). The main goal of the Ambiances framework is to provide a tool that affords a

symbiotic relationship between writing and visualizing a poem. In our framework, the

process of writing a new poem influences its resulting visualization and the visualization

also affects the process of writing.

 The first prototype of Ambiances was composed of three different areas or

“environments”: a text editor where an author composes the poem, a minimalist-

programming environment optimized for writing Processing code, and an environment

where the resulting visualization was displayed. Figure 4 shows a screen capture of an

early prototype for Ambiances.

	
10

Figure 4: Screen capture of an early prototype for Ambiances.

 We soon realized that allowing the use of a programming language in one of the

environments created a steep learning curve and introduced some overhead for the

authors. To solve this problem we eliminated the programming environment and

introduced a Microsoft Kinect sensor in its place. A Microsoft Kinect is a motion sensing

input device originally created as a peripheral for the Xbox 360 game console. When

used in conjunction with open-source libraries, a Kinect sensor enables users to interact

with computers through a natural user interface using hand gestures and body postures.

Figure 5 shows the interaction diagram for Ambiances.

Figure 5: Interaction diagram for Ambiances.

	
11

 In the current prototype of Ambiances, the layout of the environments allows

users to collaborate synchronously: authoring the poem and the visualization at the same

time. Additionally, the interface encourages the authors to receive instant feedback

through the visualization. Given that the authors cannot critique each other directly and

can communicate through the visualization, Ambiances provides an unobtrusive way of

writing poetry collaboratively that encourages unexpected interactions. For example: in

the specific case where the visual elements are developing in syncopated opposition, we

believe that the visualization and the interactions will provide hints that will allow the

author of the poem to modify certain figures of speech accordingly. Figure 6 shows the

resulting visualization obtained during the creation of a poem through Ambiances.

	

Figure 6: Visualizing the creation of a poem through Ambiances.

 The contribution of Ambiances is introducing a framework for writing and

	
12

visualizing poetry collaboratively. Ambiances also introduces authorship issues that

should be taken into consideration. From our point of view, the users involved in the

creative process are considered authors as they contribute equally towards the poem and

the visualization, which are both considered as the overall end result. Additionally, this

framework introduces new creative methods in the humanities for artifacts that can be

composed of different artworks. We believe that a symbiotic relationship is established

when using Ambiances where the poem cannot be separated from the visualization.

Finally, the creative process in Ambiances can also be considered a performance if we

document and record the procedure that was used and the interactions that occurred

during a specific session.

Conclusions and Future Work

 We believe that the visualization tools we have developed allow different

approaches and methods to close read documents, which open up new possibilities for

their analysis. In a scholarly environment, comparing documents in a collection is a

common undertaking. However, this comparison is limited to two documents. In our

case, we can compare different documents by using multiple instances of the interface. In

addition, poems can be analyzed from different perspectives by using different

visualizations from different poems. We believe that through these visualizations scholars

can carry out new forms of analysis, explore new theories, and discover hidden

relationships among different poems and authors.

 Additionally, developing Ambiances left us with questions that we still need to

answer. One of them is if Ambiances is a general tool or if the authors’ specific genres,

writing styles, languages, and cultural backgrounds influence its use. For this purpose, we

	
13

are gathering a diverse group of authors to participate in a user study. The feedback that

we will collect from the authors and their interactions will be included in the new

iterations of the system.

 We must also address questions regarding capturing, storing and replicating the

end result in the prototype for Ambiances. These become complicated issues, since we

consider the end result to include the poem and its revisions, the interactions between the

authors and the multiple resulting visualizations. Most text editors can store the multiple

revisions made to a text. However, we must devise and implement mechanisms to store

the interactions with the sensors and synchronize them with the visualizations. Our aim is

to capture and recreate the performance that the authors were involved with when

creating a poem.

 In this paper, we have described approaches that use visualization algorithms and

techniques to help scholars carry out the critical analysis of poetry. We believe that we

achieved our goal by synthesizing and highlighting specific elements from selected

poems. However, there are research possibilities open in this area. We summarize our

future work with three points. First, we will investigate if integrating specific annotations

from TEI markup into our visualizations helps scholars during their research. Second, we

will strive to create a system that will enable scholars and researchers to annotate and

share their resulting visualizations. Finally, we will attempt to create methods that will

allow scholars to store their visualizations and retrieve them for later use.

References
The Poetess Archive. Web. 9/8/2014.
"Processing.js." Web. 8/22/2012.
"Processing.org." Web. 4/2/2012 2012.
"Sentiment Analysis - text-processing.com API v1.0 documentation." Web. 8/22/2012.

	
14

Audenaert, Neal , et al. "Viewing Texts: An Art-Centered Representation of Picasso’s Writings."
Digital Humanities 2007. 2007. Print.

Chaturvedi, Manish "Visualization of TEI Encoded Texts in Support of Close Reading." Miami
University, 2011. Print.

Gainor, Rhiannon, et al. "A Mandala Browser User Study: Visualizing XML Versions of
Shakespeare’s Plays." Visible Language 43.1 (2009): 60-85. Print.

Greenberg, Ira. "syntactic_arthropod: Built with Processing." Web. 8/22/2012.
Lange, Diana. "Visualizing text - OpenProcessing." Web.
Lentricchia, Frank, and Andrew DuBois. Close reading : the reader. Durham N.C.: Duke

University Press, 2003. Print.
Meneses, Luis, Richard Furuta, and Laura Mandell. "Ambiances: A Framework to Write and

Visualize Poetry." Digital Humanities 2013. 2013. Print.
Meneses, Luis, et al. "Computational Approaches to a Catalogue Raisonné of Pablo Picasso's

Works." Interdisciplinary Journal for Germanic Linguistics and Semiotic Analysis
(2011). Print.

Meneses, Luis, et al. "Picasso’s Poetry: The Case of a Bilingual Concordance." Digital
Humanities 2008. 2008. Print.

Moretti, Franco. Distant Reading. London: Verso, 2013. Print.
---. Graphs, Maps, Trees: Abstract Models for a Literary History. London, New York: Verso,

2005. Print.
Rapati, Tiemen "Text Universe." Web. 8/22/2012.
Ruecker, Stan, Milena Radzikowska, and Stéfan Sinclair. Visual Interface Design for Digital

Cultural Heritage. Surrey, United Kingdom: Ashgate Publishing, 2011. Print.
Schaffors, Andrea, Boris Müller, and Florian Pfeffer. "esono.com - Poetry on the Road 2006."

Web. 8/22/2012.
Thiel, Stephan. "Understanding Shakespeare." Web. 8/22/2012.
Tufte, Edward. Envisioning Information. Cheshire, CT: Graphics Press, 1990. Print.
Ware, Colin. Information Visualization: Perception for Design. San Francisco: Morgan Kaufman,

2004.

