
	
  
1 

Visualizing Poetry: Creating Tools for Critical Analysis 
Luis Meneses, Laura Mandell, Richard Furuta 

Introduction	
  
Whereas the New Literary History emphasizes contextualizing literary texts, critics such as 
Stephen Greenblatt always employ close-reading techniques on the texts at hand.  Although 
digital media allegedly privileges “distant reading” (Moretti), we can develop tools and methods 
to close-read and analyze documents. Moreover, these analyses can be visualized before being 
discussed by readers.  Although too little work has been done in poetry visualization, it can be 
used to emphasize the structure of the narrative, the organization of the poem, the language 
elements, and the metaphors employed (Chaturvedi). 

We have developed a set of visualization tools that aim to help scholars carry out the critical 
analysis of poetry. More specifically, the purpose of the visualization tools is to help synthesize 
and bring forward the key elements found in poems. Our visualization tools were developed using 
open–source programming languages and we used poems encoded in TEI from the Poetess 
Archive to create the visualizations. 

As results, we found that the tools we developed purposely bring forward the graphical elements 
of poetry by carefully layering annotations (Tufte) based on literary criticism, thus creating new 
methods to analyze and create poetry. Additionally, our tools place special emphasis in viewing 
the poems from different perspectives (Meneses et al. "Computational Approaches to a Catalogue 
Raisonné of Pablo Picasso's Works") and visualizing the textual representation of the poetic texts 
in their formal structure (Audenaert et al.). These visualizations will be made available to scholars 
of all sorts, whether theoretically or historically engaged in the poetic texts that we use. In the 
following sections we will review the previous research related to poetry visualization, describe 
the rationale behind the tools we have developed and discuss their characteristics. Finally we will 
provide conclusions and recommendations for future work. 

Previous Work 
Little work has been done in creating tools to visualize and analyze poetry. However, most of the 
work has focused on creating new forms of expression using deformation and transformation 
techniques. These techniques are focused on creating new art forms using poems as an input 
source. Examples of these transformations include Visualizing Text by Diana Lange (Lange), 
Poetry on the Road (Schaffors, Müller and Pfeffer), Text Universe (Rapati) and Ira Greenberg’s 
Syntactic Arthropod (Greenberg). However, we have found that in many cases the 
transformations applied to a poem renders it unreadable. On the other hand, the visualizations we 
have developed transform the original poem to create a new representation, but keep the poem 
visible and available for study and analysis. 

The visualizations in Understanding Shakespeare (Thiel) provide an overview of different plays 
by displaying the most commonly used words grouped for each character. In this visualization, 
blocks of text represent scenes that are scaled depending on their number of terms. Additionally, 
the speeches of major characters are highlighted and characters are ordered by appearance. More 
interestingly, this project includes a section called Shakespeare Summarized where the most 



	
  
2 

representative parts of the text are chosen by a software algorithm that references the frequency 
of the words it contains. In other words, the summarization algorithm chooses a sentence that 
contains most of the prominent terms within an entire speech. In the end, this summary provides a 
way to read an entire play in less than a minute. Although the results of Understanding 
Shakespeare are displayed on the web, the end result of the project was a printed book version 
that provides a different way of reading the plays.  

Frameworks have been built with the specific purpose of analyzing poetry. Myopia is a 
framework that enables its users to analyze poetry by visually emphasizing the structure of the 
narrative, the organization of the poems, the language elements, and the metaphors employed 
(Chaturvedi). Myopia was built in Python and used open source libraries for displaying 
multidimensional graphics, which could be manipulated using an intuitive user interface. 
Additionally, The Mandala Browser is a rich prospect interface that can be used to analyze the 
different relationships occurring within a document corpus. Because of its flexibility, the Mandala 
Browser is widely used within the humanities (Gainor et al.; Ruecker, Radzikowska and Sinclair). 

Visualizing Poetry	
  
Our visualization tools were developed using Processing ("Processing.Org")[13], an open-source 
programming language designed specifically for visual artists and designers with the purpose of 
teaching the fundamentals of programming. Casey Reas and Ben Fry started Processing as a 
project in 2001. However, Processing has evolved through the years and it is used beyond its 
original pedagogical scope. Nowadays, Processing is also widely used by visual artists and 
designers to create new ways of displaying of data, animations and digital artworks. 
 
Using Processing has some obvious advantages related with the execution of the source code and 
its portability. Processing is an extension of the Java Imaging Library, so Processing files can be 
executed as Java programs. Additionally, the Processing language is also available as a JavaScript 
port ("Processing.Js")[14], making it possible to run some of our visualizations in a modern web 
browser. We believe that the main advantage derived from using Processing is the simplification 
of the development process by encapsulating the complex data structures into simpler objects and 
methods. However, Processing is not a perfect programming solution. For example, parsing 
complex XML documents and creating complex user–interactions can be difficult. Because of 
this, we also relied on external libraries and other programming languages to achieve our end 
results. 
 
In this paper we will describe 4 different tools we developed to visualize and create poetry: 
Graphwave, SentimentGraph and SentimentWheel and Ambiances. These visualization tools 
were created independently, but they all share similar characteristics. In this section we will 
elaborate on their affordances, advantages and specific uses. 

GraphWave	
  
To create this visualization, we used a process that borrows concepts from the term concordance 
in Picasso’s poetry (Meneses et al. Picasso’s Poetry: The Case of a Bilingual Concordance). This 
process can be described in four steps. First, we identified the unique terms in a selected poem. 
Second, each unique term was placed in a node in a Red Black Tree. A Red Black Tree is a 
binary data structure where operations can be performed O(lg n) time, where n is the number of 
nodes or terms. Third, each term occurrence along with its metadata was placed in a linked list 
attached to each unique node in the tree. Finally, the poem transcription and with the binary tree 



	
  
3 

are traversed simultaneously, drawing a square in the canvas for the terms in the poem. The 
vertical position of each square is calculated based on the frequency of the term it represents, and 
its color is more saturated if the term is used less frequently. Thus, unique terms exhibit a more 
saturated color and are placed higher along the canvas while common terms have a more 
transparent surrogate and have a relative lower position.  
 
In the end, the resulting visualization creates a colorful wave-resembling pattern, where terms are 
easily identifiable and can be referenced to the different parts of the poem. Additionally, the 
visualization keeps the poem readable by following the pattern from left to right. Longer poems 
are split into separate vertical waves. Figure 1 shows a visualization of “When I Have Fears” by 
John Keats. 
 

 
Figure 1: Viewing “When I Have Fears” through SquareWave. 

 
 

SentimentGraph	
  
In the SentimentGraph, we analyzed the sentiments behind each term in the text. We created this 
visualization using a two-step process. First, we used a Python script to query the Sentiment 
Analysis API ("Sentiment Analysis - Text-Processing.Com Api V1.0 Documentation"), which 
labeled each term as positive, neutral or negative. Second, we used the sentiments for each term 
and we correlated them against the poem transcription. Terms with a negative connotation are 
represented as red squares, whereas neutral terms are gray and positive are blue. Additionally, we 
included information regarding line numbers and a transcription of the poem. However, one 
drawback of this visualization is that it ignores the surrounding context of each term and the 
sentiments extracted from the web API reflect only the most common use of each word. Figure 3 
shows the visual result after feeding “Romance” by Edgar Allan Poe to the visualizing algorithm. 

 



	
  
4 

 
Figure 2: Viewing “Romance” through SentimentGraph. 

 

SentimentWheel	
  
The visualization behind SentimentWheel borrows some concepts from SentimentGraph. 
Creating this visualization involves a two-step process. Frist, we used a Python script to analyze 
the sentiments expressed. This time, we analyzed the sentiments expressed by each the each line 
of the poem. As before, the sentiments for each line were extracted using the Sentiment Analisis 
API.  Second, we ran the sentiments we obtained with the API along the lines and individual 
terms form each poem. In this case, we decided to visualize the poem as a wheel. The line 
sentiments are expressed as consecutive circles: red for negative, gray for neutral and blue for 
positive feelings. One of the main advantages of this visualization is that the poem is readable by 
reading the terms clockwise. Figure 3 shows the resulting visualization of “When I Have Fears” 
by John Keats. 

 



	
  
5 

 
Figure 3: Viewing “When I Have Fears” through SentimentWheel. 

 

Ambiances 
For Ambiances we took a different approach. Our approach was based on the premise that the 
tools used nowadays to visualize poetry have three important characteristics. First, the 
visualizations are created after the poem has been published. Second, the scholars who create and 
use the visualization usually do not have any relationship to the author who created the original 
literary work. Third, the visualizations are a direct consequence of the transformations applied to 
the original text. When we put together all three characteristics we are left with a visualization 
tool that serves its purpose when highlighting certain passages in a poem, but does not have any 
effect or significant influence on the author as the poem was written beforehand.  
 
To summarize, we attempted to challenge the three notions that in our opinion have defined how 
poetry is visualized. For this purpose, we built an interactive framework to write and visualize 
poetry. We have named this framework “Ambiances” (Meneses, Furuta and Mandell). The main 
goal of our framework is to create a tool that affords a symbiotic relationship between writing and 
visualizing a poem. In our framework, the process of writing a new poem influences its resulting 
visualization and the visualization also affects the process of writing.  
 
The first prototype of Ambiances was composed of three different areas or “environments”: a text 
editor where an author composes the poem, a minimalist-programming environment optimized 
for writing Processing code, and an environment where the resulting visualization was displayed. 



	
  
6 

However, we soon realized that using programming code in one of the environments created a 
steep learning curve and overhead for the authors. To solve this problem we eliminated the 
programming environment and used a Microsoft Kinect sensor in its place. A Microsoft Kinect is 
a motion sensing input device originally created as a peripheral for the Xbox 360 game console. 
When used in conjunction with open-source libraries, a Kinect sensor enables users to interact 
with computers through a natural user interface using hand gestures and body postures. 
 
In the current prototype of Ambiances, the layout of the environments allows users to collaborate 
synchronously: authoring the poem and the visualization at the same time. Additionally, the 
interface encourages the authors to receive instant feedback through the visualization. Given that 
the authors cannot critique each other directly and can communicate through the visualization, 
Ambiances provides an unobtrusive way of writing poetry collaboratively that encourages 
unexpected interactions. For example: in the specific case where the visual elements are 
developing in syncopated opposition, we believe that the visualization and the interactions will 
provide hints that will allow the author of the poem to modify certain figures of speech 
accordingly. Figure 4 shows the resulting visualization obtained during the creation of a poem 
through Ambiances. 
 
 
	
   

 
Figure 4: Visualizing the creation of a poem through Ambiances. 

 

 



	
  
7 

Discussion 
We believe that the visualization tools we have developed constitute a different approach and 
method to close-read documents and open up new possibilities for analysis. In the specific cases 
when sentiments are used, they can create a baseline to facilitate the comparison and exploration 
of features from documents from different time periods, languages and themes. Because of the 
characteristics of the SentimentGraph and SentimentWheel, we can view documents from 
different periods as if they were concurrent. Thus, we have developed an interface that can be 
used to identify, discovering, and analyzing hidden relationships between the documents in a 
collection. 
	
  
In a scholarly environment, comparing documents in a collection is a common undertaking. 
However, this comparison is limited to two documents. In our case, we can compare different 
documents by using multiple instances of the interface. In addition, poems can be analyzed from 
different perspectives by using different visualizations with different poems. We believe that the 
use of this use of the visualizations enables scholars to carry out new forms of analysis, explore 
new theories, and discover hidden relationships among different poems and authors.  
 
Additionally, developing Ambiances left us with questions that we still need to answer. One of 
them is if Ambiances will work better with authors in specific genres, writing styles, languages 
and cultural backgrounds. It is not unconventional to assume that it will, but we still need proof. 
For this purpose, we are gathering a diverse group of authors to participate in this study. The 
feedback that we will collect from the authors and their interactions will be included in the new 
iterations of the system.  
 
We must also address questions regarding capturing, storing and replicating the end result in the 
prototype for Ambiances. These become complicated issues, since we consider the end result to 
include the poem and its revisions, the interactions between the authors and the multiple resulting 
visualizations. Most text editors can store the multiple revisions made to a text. However, we 
must devise and implement mechanisms to store the interactions with the sensors and synchronize 
them with the visualizations. Our aim is to capture and recreate the performance that the authors 
were involved when creating a poem.	
  

Conclusions and Future Work 
We have described our approaches using the visualization algorithms and techniques to help 
scholars carry out the critical analysis of poetry. We believe that we achieved our goal by 
synthesizing and highlighting specific elements from selected poems. However, there are research 
possibilities open in this area. We summarize future work in three points. First, we will 
investigate if integrating specific annotations from TEI markup into our visualizations helps 
scholars during their research. Second, we will strive to create a system that will enable scholars 
and researchers to annotate and share their resulting visualizations. Finally, we will attempt to 
create methods that will allow scholars store their visualizations and retrieve them for later use. 

References 
"Processing.Js". 8/22/2012. http://www.processingjs.org/. 
"Processing.org". 4/2/2012 2012. http://www.processing.org/. 
"Sentiment Analysis - Text-Processing.Com Api V1.0 Documentation". 8/22/2012. http://text-

processing.com/docs/sentiment.html. 



	
  
8 

Viewing Texts: An Art-Centered Representation of Picasso’s Writings. Digital Humanities 2007. 
2007. Print. 

Chaturvedi, Manish "Visualization of Tei Encoded Texts in Support of Close Reading." Miami 
University, 2011. Print. 

Gainor, Rhiannon, et al. "A Mandala Browser User Study: Visualizing Xml Versions of 
Shakespeare’s Plays." Visible Language 43.1 (2009): 60-85. Print. 

Greenberg, Ira. "Syntactic_Arthropod: Built with Processing". 8/22/2012. 
http://iragreenberg.com/poetess/viz02/. 

Lange, Diana. "Visualizing Text - Openprocessing". http://openprocessing.org/sketch/44133. 
Meneses, Luis, Richard Furuta, and Laura Mandell. "Ambiances: A Framework to Write and 

Visualize Poetry." Digital Humanities 2013. 2013. Print. 
Meneses, Luis, et al. "Computational Approaches to a Catalogue Raisonné of Pablo Picasso's 

Works." Interdisciplinary Journal for Germanic Linguistics and Semiotic Analysis  
(2011). Print. 

Picasso’s Poetry: The Case of a Bilingual Concordance. Digital Humanities 2008. 2008. Print. 
Moretti, Franco. Graphs, Maps, Trees: Abstract Models for a Literary History. London, New 

York: Verso, 2005. Print. 
Rapati, Tiemen "Text Universe". 8/22/2012. http://openprocessing.org/sketch/10383. 
Ruecker, Stan, Milena Radzikowska, and Stéfan Sinclair. Visual Interface Design for Digital 

Cultural Heritage. Surrey, United Kingdom: Ashgate Publishing, 2011. Print. 
Schaffors, Andrea , Boris  Müller, and Florian  Pfeffer. "Esono.Com - Poetry on the Road 2006". 

8/22/2012. http://www.esono.com/boris/projects/poetry06/. 
Thiel, Stephan. "Understanding Shakespeare". 8/22/2012. http://www.understanding-

shakespeare.com/index.html. 
Tufte, Edward. Envisioning Information. Cheshire, CT: Graphics Press, 1990. Print. 
 
 


